ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи расхода электромагнитные МастерФлоу

Назначение средства измерений

Преобразователи расхода электромагнитные Мастер Φ лоу (далее – М Φ) предназначены для преобразования объема и расхода холодной или горячей воды, а также других жидкостей с удельной электропроводностью не менее 10^{-3} См/м, в электрические сигналы: импульсный, частотный, постоянного тока или непосредственно, в измеряемые величины.

Описание средства измерений

МФ состоят из измерительного участка и электронного блока. Измерительный участок выполнен либо в виде отрезка трубопровода из немагнитной стали, футерованного защитным материалом, либо в виде отливки из конструкционных пластмасс. На внешней поверхности измерительного участка расположена магнитная система, заключенная в кожух, обеспечивающий ее защиту.

По способу соединения с трубопроводом МФ выпускаются следующих конструктивных исполнений:

- с фланцевым соединением;
- с соединением типа "сэндвич";
- с резьбовым соединением.

Электронный блок может располагаться как в вертикальном, так и горизонтальном корпусах (рисунок 1 и рисунок 2 соответственно).

Принцип действия МФ основан на измерении электродвижущей силы (ЭДС), возникающей в электропроводящей жидкости, движущейся в магнитном поле. ЭДС снимается электродами, расположенными в стенках трубопровода, усиливается и подается на аналогоцифровой преобразователь, на выходе которого формируется цифровой код, пропорциональный расходу измеряемой жидкости. С помощью микропроцессора цифровой код преобразуется в электрические сигналы определённого вида в зависимости от используемого выхода или, непосредственно, в показания объема и расхода, отображаемые на индикаторе.

МФ преобразуют:

- объем прошедшей жидкости в пропорциональное ему количество импульсов на импульсном выходе с нормированной по объёму ценой;
- расход жидкости в импульсную последовательность на частотном выходе, с частотой, пропорциональной этому расходу.

 $M\Phi$ могут комплектоваться (по заказу) дополнительной платой токового выхода, преобразующей расход жидкости в пропорциональный этому расходу сигнал постоянного тока. $M\Phi$ могут выполнять измерения прямого и реверсивного потоков.

МФ имеют варианты исполнений с блоком индикации (встроенный или выносной) для отображения на дисплее измеренных параметров

Основные отображаемые параметры и их диапазоны приведены ниже

• • • • • • • • • • • • • • • • • • •							
	Исполнение "И" со встроенным	Исполнение "И1" с выносным					
Отображаемый параметр	блоком индикации	блоком индикации					
Объем, м ³	0,00099999999,999	0,00099999999,999					
Объемный расход, $M^3/4$	0,0000099999,99999	0,0000099999,99999					
Время, час:мин	00:0099999:59	00:0065535:59					

 $M\Phi$ имеют встроенный интерфейс RS-232, а также (по заказу) комплектоваться интерфейсом RS-485.

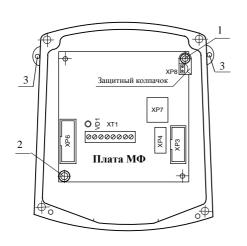

МФ применяются в составе теплосчетчиков, счетчиков-расходомеров, а также в автоматизированных системах сбора данных, контроля и регулирования технологических процессов.

Рисунок 1

Рисунок 2

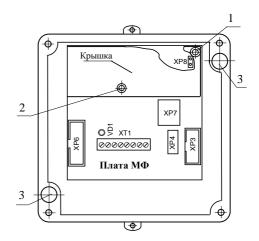


Рисунок 3

Рисунок 4

Места пломбирования $M\Phi$ для вертикального и горизонтального корпусов электронного блока приведены на рисунках 3 и 4 соответственно.

- 1- пломба поверителя, исключающая несанкционированный доступ к изменению настроечных параметров;
- 2- пломба ОТК изготовителя;
- 3- отверстия для навесных пломб, устанавливаемых контролирующей организацией.

Номенклатурный ряд МФ в зависимости от конструктивного исполнения, метрологического класса, типа выхода и диаметра условного прохода (Ду)

Класс	Конструктивное исполнение корпуса проточной части											
	пластик. Ду 10Ду80			сэндвич металл. Ду20Ду 50			фланцевые металл. Ду15Ду300					
		тип ві	ыхода		тип выхода			тип ві	тип выхода			
	Имп.	Част.	Инд.	Ток	Имп.	Част.	Инд.	Ток	Имп.	Част.	Инд.	Ток
Б,Б2,В	+	+	+	+	+	+	+	+	+	+	+	+
Г,Д,Е	+	+	+	-	i	ı	ı	-	ı	-	Ī	-
Е	+	+	+	-	+	+	+	-	+	+	+	-

Программное обеспечение

Алгоритм программного обеспечения (далее ПО) микропроцессора обеспечивает измерение ЭДС, пропорциональной расходу, обработку измерительной информации, и вывод результатов измерений, в зависимости от используемого выхода, или в виде сигнала прямоугольной формы с частотой прямо пропорциональной расходу, или импульсного сигнала с программируемой по объему ценой или в виде кода, прямо пропорционального расходу, для управления платой токового выхода, или на дисплей для исполнений с индикацией (непосредственно, в виде показаний накопленного объёма и текущего объёмного расхода).

 Π О, реализуемое в MФ, защищено от несанкционированного доступа к настройкам при помощи пломбирования (рисунок 2).

Идентификационные параметры программного обеспечения (ПО)

		Номер вер-	Цифровой иден-	Алгоритм вычис-
Наименование ПО	Идентификацион-	сии (иден-	тификатор ПО	ления цифрового
	ное наименование	тификаци-	(контрольная	идентификатора
	ПО	онный но-	сумма исполняе-	ПО
		мер) ПО	мого кода)	
МФ, МФ-Ч	mf-imp_freq.bin	2.6	0xB471	CRC16
МФ-Р	mf-imp_reverse.bin	3.6	0xDC68	CKC10

Уровень защиты ПО от непреднамеренных и преднамеренных изменений "C" по MИ3286-2010.

Метрологические и технические характеристики

Максимальные расходы МФ ($g_{\text{макс}}$) в м³/ч в зависимости от класса и диаметра условного прохода (Ду).

Классы		(Ду), мм												
	10	15	20	25	32	40	50	65	80	100	125	150	200	300
		максимальный расход $(g_{\text{макс}}), \text{м}^3/\text{ч}$												
В	3	6,5	12,5	20	38	55	80	130	200	360	450	620	1100	2500
Б,Б2,Г,Д,Е	2,5	5	10	18	30	45	75	120	180	300	400	570	1000	2500
Э	2	4	8	15	24	35	60	100	150	240	320	460	800	2000

Значения минимального $(g_{\text{мин}})$ и переходных $(g_{\text{п1}},\ g_{\text{п2}})$ расходов для различных классов $M\Phi$

Классы	g _{мин}	$g_{\pi ep1}$	g _{пер2}
Б, Б2	g _{make} /250	$g_{\text{Make}}/150$	g _{make} /100
В	g _{make} /500	g _{макс} /250	g _{макс} /150
Γ	$g_{\text{Make}}/2000$	$g_{\text{Make}}/500$	g _{макс} /250
Д		$g_{\text{make}}/1000$	g _{макс} /500
Е	$g_{\text{Make}}/2000$	-	$g_{\text{Makc}}/1000$
Э	g _{макс} /100	$g_{\text{Makc}}/10$	_

Метрологические характеристики преобразователей в зависимости от диапазона расходов и класса

Наименование характеристики	Класс	Диа	пазон расхо	дов
		дмин дпер1	g пер1 g пер2	gпер2 gмакс
Пределы допускаемой относительной по-	Б, В, Г, Д	±3	±2	±1
грешности, %	Б2	±3	±	-2
- преобразования объема в количество вы-	Е	±2	2	±1
ходных импульсов;	Э*	±0,5	±0	,25
- преобразования расхода в частоту выход-				
ного сигнала;				
- измерений объема и объемного расхода				
при отображении на индикаторе МФ ис-				
полнений "И"				
- измерений объема при отображении на				
индикаторе МФ исполнений "И1"				
Пределы допускаемой относительной по-	Б, Б2, В	g _{мин} 0,025	$g_{\text{макс}} = 0.025$	дмакс дмакс
грешности преобразования расхода в вы-		$+0,025g_{M}$	TKC	±1
ходной сигнал постоянного тока при ис-		$\pm \frac{g_{u_{3M}}}{g_{u_{3M}}}$		
пользовании платы токового выхода, %		8 изм		

^{*} Преобразователи класса Э с диапазонов расходов $g_{\text{мин}} = g_{\text{макс}}/10$ и допускаемой погрешностью ± 0.25 % могут поставляться по отдельному заказу.

Пределы допускаемой относительной погрешности измерений времени ±0,05 %.

Строительная длина и масса преобразователей в зависимости от конструктивных исполнений

Ду,	Строительная длина, мм для конструктивных Масса, кг, для конструктивных					
MM	ИС	сполнений, не бол	олнений, не более исполнений, не			более
	пластик. кор-	сэндвич ме-	фланцевые ме-	пласт.	сэндвич	фланце-
	пус	талл.	талл.	корп.		вые
10	140	-	-	0,5	-	-
15	140	-	138	0,6	-	2,7
20	140	158	158	0,7	3	3,6
25	175	158	158	0,9	3,2	4
32	175	163	163	1,1	4,5	5,5
40	205	204	204	1,5	5,5	7
50	205	209	209	2	6,5	7,9
65	260	-	215	3,4	-	11
80	300	-	245	4,3	-	15
100	-	-	255	-	-	21
125	-	1	320	-	-	25,5
150	-	-	327	_	-	34
200	-	-	367	-	-	51,1
300	-	-	458	-	-	97

Диапазон частот на частотном выходе, Гц	0,1 1000
Диапазоны токов на токовом выходе, мАот 0 до	5 (от 4 до 20)
Диапазон температуры рабочей среды, °С от плюс 0,5 до	плюс 150
Избыточное давление рабочей среды, МПа, не более	1,6 или 2,5
Гидравлические потери на номинальном $(0.5g_{\text{макс}})$ расходе, МПа, не более	0,005
Номинальное напряжение электропитания постоянным током, В	12
Потребляемая электрическая мощность, Вт, не более	7,5

Степень защиты преобразователей по ГОСТ 14254-96
Исполнение по устойчивости к вибрации по ГОСТ Р 52931-2008 группа N1
Исполнение по устойчивости к климатическим
воздействиям по ГОСТ Р 52931-2008
Напряженность переменного (50 Гц) внешнего магнитного поля, А/м до 400
Средний срок службы преобразователей, лет, не менее
Средняя наработка на отказ, не менее, ч

Знак утверждения типа

наносится на титульный лист эксплуатационной документации типографским способом и фотоспособом на маркировочные таблички МФ.

Комплектность средства измерений

Наименование	Кол-во	Примечание
Преобразователь расхода МастерФлоу	1	В соответствии с заказом
Комплект монтажных частей	1 к-т	По заказу
Кабель для подключения к ПК	1	По заказу
Интерфейс RS-485	1	По заказу
Плата токового выхода	1	По заказу
Руководство по эксплуатации ППБ.407112.001 РЭ	1	
Паспорт ППБ.407112.001 ПС	1	
Методика поверки ППБ.407112.001 МП	1	По заказу

Поверка

осуществляется в соответствии с документом "ГСИ. Преобразователи расхода электромагнитные Мастер Φ лоу" Методика поверки ППБ.407112.001 МП, утвержденной ГЦИ СИ Φ ГУП "ВНИИМС" в июле 2012 г.

Основное поверочное оборудование:

- установка поверочная расходомерная "Взлет ПУ" диапазон расходов $0,005...750 \text{ м}^3/\text{ч}$, погрешность, не более $\pm 0,03/\pm 0,3\%$;
- установка поверочная ПРУВ ПС-0,05/1000, диапазон расходов 0,05...1000 $\text{м}^3/\text{ч}$; погрешность измерений: не более $\pm 0,025/\pm 0,5\%$
- частотомер электронно-счетный Ч3-63: диапазон частот 0,1 Γ ц...200 М Γ ц, погрешность, $\pm (5 \cdot 10^{-7} + 1/f_{\text{изм}} \cdot t_{\text{сч}})$ %;
 - вольтметр B7-38 диапазон токов 0,01...20 мА, погрешность,%, $\pm (0,25+0,02\cdot I_g/I_{_{\rm ИЗМ}});$
 - магазин сопротивлений Р4831, кл.002, сопротивление 500 Ом.

Сведения о методиках (методах) измерений

изложены в Руководстве по эксплуатации на "Преобразователи расхода электромагнитные Мастер Φ лоу".

Нормативные и технические документы, устанавливающие требования к преобразователям расхода электромагнитным МастерФлоу:

- 1. ГОСТ 8.145-75 "ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений объемного расхода жидкости в диапазоне от $3\cdot10^{-6}$ до $10 \text{ m}^3/\text{c}$ "
- 2. ГОСТ Р 52931-2008 "Приборы контроля и регулирования технологических процессов. Общие технические условия"
- 3. ГОСТ 28723-90 "Расходомеры скоростные, электромагнитные и вихревые. Общие технические требования и методы испытаний"
- 4. ТУ ППБ.407112.001-29524304-11 "Преобразователи расхода электромагнитные МастерФлоу". Технические условия

Рекомендации по	областям применения	в сфере	государственного	регулирования	обес-
печения единства і	измерений				

- выполнение торговых и товарообменных операций.

Испытательный центр

ГЦИ СИ ФГУП "ВНИИМС" (аттестат аккредитации № 30004-08) 119361, Москва, ул. Озерная, 46 тел. +7(495) 437-57-77, факс +7(495) 437-56-66.

E-mail: office@vniims.ru

Заместитель Руководителя Федерального Агентства по техническому регулированию и метрологии

Ф.В.Булыгин

М.п.

"____" ____2012 г.