ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи расхода электромагнитные ПРЭМ

Назначение средства измерений

Преобразователи расхода электромагнитные ПРЭМ предназначены для измерений и преобразований в выходные электрические сигналы объемного расхода и объема электропроводящих жидкостей.

Описание средства измерений

Принцип действия преобразователей основан на явлении индуцирования ЭДС в движущемся в магнитном поле проводнике — измеряемой среде.

Индуцируемая ЭДС, значение которой пропорционально расходу (скорости) измеряемой среды, воспринимается электродами и поступает на электронный блок преобразования, выполняющий обработку сигнала в соответствии с установленными алгоритмами.

Конструктивно преобразователи состоят из измерительного участка и электронного блока (ЭБ).

Измерительный участок представляет собой футерованный защитным материалом отрезок трубопровода из немагнитной стали, конструктивно выполненный во фланцевом или в бесфланцевом - типа «сэндвич» исполнениях. Измерительный участок заключен в кожух, защищающий элементы магнитной системы преобразователя.

ЭБ преобразователей выполнен в герметичном корпусе и имеет различные конструктивные исполнения (1 и 2), исполнение 2 снабжено встроенным оптическим портом.

Преобразователи обеспечивают:

- индикацию измерительной информации посредством табло;
- архивирование измерительной информации и результатов диагностики;
- представление измерительной информации и результатов диагностики на внешние устройства посредством унифицированных выходных сигналов.

Преобразователи имеют следующие выходные сигналы:

- один или два импульсных сигнала, формируемых дискретным изменением сопротивления выходной цепи при прохождении через преобразователь (в одном или в двух направлениях потока) заданного объема измеряемой среды или при наличии диагностируемого события;
 - токовый сигнал в диапазоне тока (4-20) мА, пропорциональный измеренному расходу;
- цифровой сигнал обмена данными (интерфейс RS232, RS485, Ethernet, оптический), несущий информацию о результатах измерений и диагностики.

Преобразователи имеют различные метрологические классы, определяющие диапазоны преобразования расхода и объема, в которых нормированы пределы относительной погрешности при различных направлениях потока измеряемой среды.

Конструктивные исполнения, метрологический класс, наличие табло и выходных сигналов определяются при заказе преобразователей.

Преобразователи по защищенности от воздействия окружающей среды выполнены в соответствии со степенью защиты IP65 по ГОСТ 14254-96.

Внешний вид преобразователей различных исполнений приведен на рисунках 1 и 2.

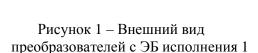


Рисунок 2 – Внешний вид преобразователей с ЭБ исполнения 2

Программное обеспечение

Преобразователи имеют встроенное программное обеспечение (ПО). Структура и взаимосвязи частей ПО показана на рисунке 3.

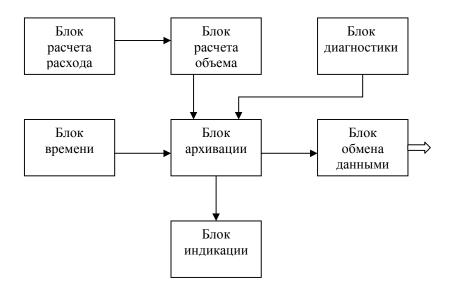


Рисунок 3

Основные функции частей программного обеспечения:

- 1) Блок расчета расхода предназначен для расчетов его значений по результатам измерений сигнала, формируемого на электродах преобразователя;
- 2) Блок расчета объема предназначен для расчетов его значений по результатам измерений расхода;
- 3) Блок архивации предназначен для расчетов и хранения измерительной и диагностической информации;
- 4) Блок обмена предназначен для вывода через последовательный порт измерительной, диагностической и настроечной информации на внешние устройства приема;
- 5) Блок индикации предназначен для визуального отображения на табло измерительной информации;
- 6) Блок реального времени предназначен для измерений времени работы и времени действия диагностируемых ситуаций;

7) Блок диагностики предназначен для контроля значений измеренных параметров на соответствие заданным значениям и формирования диагностических сообщений.

Идентификационные данные ПО и уровень защиты ПО преобразователей по МИ 3286-2010

Идентификаци	Номер версии	Цифровой	Алгоритм
онное	(идентификацио	идентификатор	вычисления
наименование	нный номер)	программного	цифрового
программного	программного	обеспечения	идентификатора
обеспечения	обеспечения	(контрольная сумма	программного
		исполняемого кода)	обеспечения
ПО	23 ¹⁾	$37B5^{1)}$	Сумма байт кода
110	$24^{2)}$	$462D^{2)}$	по модулю 2 ¹⁶
	онное наименование программного	онное наименование программного обеспечения (идентификацио нный номер) программного обеспечения	онное наименование программного обеспечения обеспечения исполняемого кода) 110 (идентификацио идентификатор программного обеспечения (контрольная сумма исполняемого кода) 23 ¹⁾ 37B5 ¹⁾

¹⁾ Для преобразователей с ЭБ исполнения 1. 2) Для преобразователей с ЭБ исполнения 2.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений С по МИ 3286-2010.

В целях предотвращения доступа к узлам регулировки и настройки, а также к элементам конструкции, предусмотрены места пломбирования, указанные на рисунках 4 и 5.

Рисунок 4 – Места пломбирования ЭБ исполнения 1

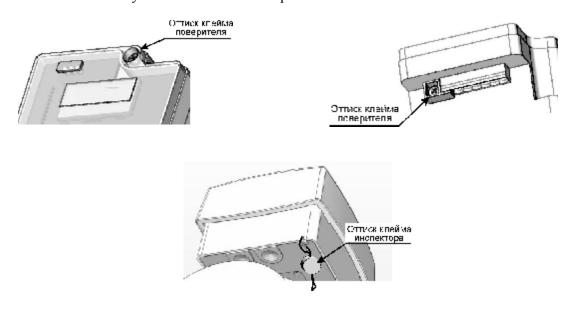


Рисунок 5 – Места пломбирования ЭБ исполнения 2

Метрологические и технические характеристики

Диаметры условных проходов преобразователей и соответствующие им максимальные значения расходов (Q_{max}), в зависимости от класса преобразователей и направления потока измеряемой среды, соответствуют значениям, приведенным в таблице 1.

Таблица 1

	1								
Ду	15	20	32	40	50	65	80	100	150
$Q_{\text{max}1}, M^3/4$	6,0	12	30	45	72	120	180	280	630
Q_{max2}^{1} , M^{3}/q	3,0	6,0	15	22,5	36	60	90	140	315
¹⁾ По заказу потребителя (соответствует скорости потока 5 м/с).									

Переходные $(Q_{t1},\ Q_{t2})$ и минимальные (Q_{min}) значения расходов, в зависимости от метрологического класса преобразователей и направления потока измеряемой среды, определяются из соотношений, приведенных в таблице 2.

Таблица 2

	Значения расхода при прямом направлении потока измеряемой среды					
Класс	Q_{\min}	Q_{t2}	Q_{t1}			
B1	$Q_{max1}/625$	$Q_{max1}/450$	$Q_{max1}/100$			
C1	$Q_{max1}/625$	$Q_{max1}/250$	$Q_{max1}/100$			
D	$Q_{max1}/375$	$Q_{max1}/150$	$Q_{max1}/100$			
	Значения расхода при обратном направлении потока измеряемой среды					
Класс	Q_{\min}	Q_{t2}	Q_{t1}			
B1	$Q_{max1}/250$	$Q_{max1}/150$	$Q_{max1}/100$			
C1	$Q_{max1}/250$	$Q_{max1}/150$	$Q_{max1}/100$			
D	$Q_{max1}/375$ $Q_{max1}/150$ $Q_{max1}/100$					

 Q_{max1} – максимальное значение расхода согласно таблице 1.

Примечание – Численные значения расходов приведены в руководстве по эксплуатации.

Пределы допускаемой относительной погрешности измерений при представлении расхода и объема на табло и посредством импульсного и цифрового сигналов, соответствуют значениям:

- ± 1 % в диапазоне измерений расхода от Q_{t1} до Q_{max} ;
- \pm 2 % в диапазоне измерений расхода от Q_{t2} до Q_{t1} ;
- $\pm\,5\,\%$ в диапазоне измерений расхода от Q_{min} до Q_{t2} .

Пределы допускаемой приведенной погрешности при преобразовании измеренных значений расхода в сигнал постоянного тока при сопротивлении нагрузки не более 500 Ом соответствуют \pm 0,2 %.

Пределы допускаемой относительной погрешности при измерении времени соответствуют ± 0.05 %.

Питание преобразователей осуществляется от источника постоянного тока с выходным напряжением (12 ± 0.5) B.

Мощность, потребляемая от источника питания, не более 5 B·A.

Габаритные размеры и масса преобразователей, в зависимости от конструктивного исполнения, не превышают значений, указанных в таблице 3.

Таблица 3

Исполнение «сэндвич		ич» Исполнение фланцевое		вое
Ду	Габаритные размеры	Масса, кг	Габаритные размеры	Масса, кг
	(длина; ширина; высота), мм		(длина; ширина; высота), мм	
15	95; 60; 160	1,1	125; 95; 170	2,4
20	115; 80; 190	1,4	155; 105; 200	3,2
32	135; 100; 210	2,7	200; 135; 220	4,7
40	150; 125; 225	3,2	200; 145; 250	6,1
50	160; 115; 240	3,7	200; 160; 250	7,2
65	175; 150; 255	5,2	200; 180; 290	10,7

	80	190; 165; 270	7,0	200; 195; 290	14,5
ſ	100	220; 190; 290	9,3	250; 215; 300	19,2
ſ	150	320; 255; 350	21,2	315; 280; 360	28,6

Преобразователи в рабочих условиях применения обеспечивают свои технические характеристики при воздействии на них следующих влияющих величин:

- удельная электропроводность измеряемой среды в диапазоне от 10⁻³ до 10 См/м;
- температура измеряемой среды в диапазоне от 0 до 150 °C;
- давление измеряемой среды не более 1,6 МПа;
- температура окружающего воздуха в диапазоне от минус 10 до плюс 50 °C;
- относительная влажность воздуха не более 95 % при температуре не более 35 °C;
- атмосферное давление в диапазоне от 84 до 106,7 кПа;
- переменное частотой 50 Гц магнитное поле напряженностью до 40 А/м;
- механическая вибрация частотой (10 55) Гц с амплитудой смещения до 0,35 мм;

Преобразователи сохраняют свои технические характеристики после воздействия на них следующих влияющих величин, характеризующих условия транспортирования:

- температуры окружающего воздуха от минус 25 до плюс 55 °C;
- относительной влажности воздуха до 95 % при температуре 35 °C;
- синусоидальная вибрация частотой (10 55) Гц и амплитудой смещения до 0,35 мм.

Средняя наработка на отказ не менее 80000 ч.

Средний срок службы не менее 12 лет.

Знак утверждения типа

наносится на лицевую панель преобразователей в виде наклейки и на титульный лист эксплуатационной документации типографским способом.

Комплектность средства измерений

Наименование	Обозначение	Кол-во	Примечание
Преобразователь расхода	ПРЭМ	1	Исполнение согласно
электромагнитный			заказу
Руководство по эксплуатации	РБЯК.407111.039 РЭ	1	
Паспорт	РБЯК.407111.039 ПС	1	
Методика поверки	РБЯК.407111.039 МП		1 экз. при групповой
			поставке
Клеммник	-	-	Количество согласно
			исполнению
Блок питания	-	1	Тип по наличию на
			момент поставки
Адаптер интерфейса RS232	-	-	По заказу

Поверка

осуществляется по документу РБЯК.407111.039 МП «Преобразователи расхода электромагнитные ПРЭМ. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева» 5 марта 2011 г.

Перечень эталонов, применяемых при поверке:

- установка расходомерная УМР-1. Диапазон воспроизведений расхода воды от 0,01 до 360 м 3 /ч, относительная погрешность \pm 0,05 %;
- вольтметр универсальный цифровой B7-38. Диапазон измерений напряжения постоянного тока (0 2) В, кт 0,04/0,02;
 - магазин сопротивлений Р4831, кт 0,02. Сопротивление 100 Ом.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе РБЯК.407111.039 РЭ «Преобразователи расхода электромагнитные ПРЭМ. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к преобразователям расхода

ГОСТ 8.145-75. «ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений объемного расхода жидкости в диапазоне от $3 \cdot 10^{-6}$ до $10 \text{ m}^3/\text{c}$ ».

ГОСТ 28723-90. «Расходомеры скоростные, электромагнитные и вихревые. Общие технические требования и методы испытаний».

ТУ 4213-039-15147476-2006. Преобразователи расхода электромагнитные ПРЭМ. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение государственных учетных операций. осуществление торговли и товарообменных операций.

П

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева», 190005, Санкт-Петербург, Московский пр., 19 Тел. (812) 251-76-01, факс (812) 713-01-14 e-mail: info@vniim.ru, регистрационный номер № 30001-10.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В.Булыгин

М.п.

« » 2013 г.