

РАСХОДОМЕР-СЧЕТЧИК УЛЬТРАЗВУКОВОЙ ВЗЛЕТ МР

исполнение УРСВ-311

КРАТКОЕ РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

ВНИМАНИЕ! Перед началом работ обязательно ознакомьтесь с эксплуатационной документацией на расходомер, поставляемой на CD-носителе, либо представленной на сайте фирмы «Взлет» www.vzljot.ru.

НАЗНАЧЕНИЕ

Расходомер для измерения расхода и объема холодной и горячей воды.

ОСОБЕННОСТИ

- Отсутствие износа в связи с отсутствием подвижных частей.
- Фланцованное исполнение проточной части.
- Положение при монтаже в прямой трубопровод произвольное: горизонтальное, наклонное или вертикальное.
- Два исполнения по степени защиты: IP65 или IP67.
- Вывод измерительной информации в виде частотно-импульсных или логических сигналов, а также по интерфейсам RS-485 или M-Bus.
- Вывод измерительной, диагностической, установочной, архивной и другой информации через радиотранспондер ближнего радиуса действия (RFID), поддерживающий технологию NFC в соответствии с ISO 15693.
- Энергонезависимое исполнение.
- Ведение архивов измеряемых параметров.
- Индикация измеренных параметров и результатов вычислений на жидкокристаллическом дисплее с встроенной подсветкой.
- Самодиагностика.
- Настройка расходомера на объекте по интерфейсу в программе «Монитор УРСВ-311», входящей в пакет программ «Универсальный просмотрщик».

ВНИМАНИЕ! Нарушение или удаление поверочных пломб расходомера не допускается! В противном случае гарантийные обязательства и поверка теряют свою силу.

СОДЕРЖАНИЕ

1. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	3
2. МАРКИРОВКА	4
3. ОБЕСПЕЧЕНИЕ ЭНЕРГОНЕЗАВИСИМОСТИ	5
4. МОНТАЖ РАСХОДОМЕРА	6
4.1. Общие требования	6
4.2. Требования к длине прямолинейных участков	6
4.3. Монтаж на трубопровод	9
4.4. Электромонтаж расходомера	9
4.5. Варианты электромонтажа расходомера	11
4.6. Обеспечение степени защиты	12
5. ИНТЕРФЕЙСЫ РАСХОДОМЕРА	13
5.1. Универсальный и логический выходы	13
5.2. Интерфейс RS-485	14
5.3. Интерфейс M-Bus	14
5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID)	14 15
5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров	14 15 15
 5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров 6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ 	
 5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров 6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ 7. ИНТЕРФЕЙС RFID 	
 5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров 6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ 7. ИНТЕРФЕЙС RFID 7.1. Установка ПО «Монитор УРСВ-311» 	
 5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров 6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ 7. ИНТЕРФЕЙС RFID 7.1. Установка ПО «Монитор УРСВ-311» 7.2. Чтение параметров 	
 5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров 6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ 7. ИНТЕРФЕЙС RFID 7.1. Установка ПО «Монитор УРСВ-311» 7.2. Чтение параметров 7.3. Вкладка «О приборе» 	
 5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров 6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ 7. ИНТЕРФЕЙС RFID 7.1. Установка ПО «Монитор УРСВ-311» 7.2. Чтение параметров 7.3. Вкладка «О приборе» 7.4. Вкладка «Текущие измерения» 	
 5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров 6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ 7. ИНТЕРФЕЙС RFID 7.1. Установка ПО «Монитор УРСВ-311» 7.2. Чтение параметров 7.3. Вкладка «О приборе» 7.4. Вкладка «Текущие измерения» 7.5. Вкладка «Архивы» 	
 5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров 6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ 7. ИНТЕРФЕЙС RFID 7.1. Установка ПО «Монитор УРСВ-311» 7.2. Чтение параметров 7.3. Вкладка «О приборе» 7.4. Вкладка «Текущие измерения» 7.5. Вкладка «Архивы» 8. ПЛОМБИРОВАНИЕ 	
 5.3. Интерфейс M-Bus 5.4. Транспондер ближнего радиуса действия (RFID) 5.5. Индикация параметров 6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ 7. ИНТЕРФЕЙС RFID 7.1. Установка ПО «Монитор УРСВ-311» 7.2. Чтение параметров 7.3. Вкладка «О приборе» 7.4. Вкладка «Текущие измерения» 7.5. Вкладка «Архивы» 8. ПЛОМБИРОВАНИЕ 9. САМОДИАГНОСТИКА 	

1. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование параметра		Значение параметра						
Диаметр условного прохода (типораз- мер), DN	32	40	50	65	80	100	125	150
Наименьший измеряемый средний объемный расход, Q _{мин} , м ³ /ч	0,11	0,18	0,28	0,48	0,72	1,13	1,77	2,50
Наибольший измеряемый средний объемный расход, Q _{макс} , м ³ /ч	14,5 22,6 35,4 60,0 90,6 141,5				221,0	318,4		
Порог чувствительности расходомера, м ³ /ч	0,022	0,022 0,036 0,057 0,10 0				0,226	0,353	0,510
Рабочий диапазон скоростей потока жидкости, м/с	от 0,04 до 5,0							
Погрешность измерений	$d = \pm \left(0,95 + \frac{0,1}{v}\right),$ %, где v – скорость потока, м/с.				ı/c.			
Температура измеряемой жидкости, °С	от 0 до 90 от 0 до 130 от 0 до 160							
Давление измеряемой жидкости, МПа				до	2,5			
Степень защиты				IP65 ил	ти IP67			
Интерфейс		RS-4	85, про ⁻	гокол М	lodBus,	M-Bus,	RFID	
Напряжение питания, В	3,6 В от литиевого элемента питания 9-24.5 В постоянного тока							
Межповерочный интервал, лет				2	4			
Средняя наработка на отказ, ч				75	000			
Средний срок службы, лет								
- при автономном питании;				1	0			
- при внешнем питании		12						

2. МАРКИРОВКА

Рис.1. Маркировка вторичного преобразователя (ВП) расходомера.

3. ОБЕСПЕЧЕНИЕ ЭНЕРГОНЕЗАВИСИМОСТИ

Электропитание расходомера обеспечивается (по заказу):

- при температуре измеряемой жидкости от 0 до 90 °C и от 90 °C до 130 °C – от встроенной литиевой батареи типоразмера C с номинальным напряжением 3,6 В, либо от внешнего источника постоянного тока стабилизированным напряжением в диапазоне от 9 до 24,5 В с уровнем пульсаций не более ±1,0 %;
- при температуре измеряемой жидкости свыше 130 °С только от внешнего источника постоянного тока.
- при электропитании от внешнего источника в расходомер устанавливается резервная батарея типоразмера АА, обеспечивающая работу прибора при пропадании внешнего питания и рассчитанная на суммарное время работы – 1 год в течение всего срока службы расходомера.

Средняя потребляемая мощность по цепи 24 В при внешнем питании – не более 1,5 мВт.

Срок службы расходомера с автономным питанием без замены встроенной батареи при нормальных условиях эксплуатации не менее 10 лет. Под нормальными условиями эксплуатации подразумеваются:

- температура окружающей среды от 15 до 35 °C;
- температура измеряемой жидкости от 0 до 90 °С;
- максимальная рабочая частота на универсальном выходе не более 8 Гц;
- съем архивов по интерфейсу RS-485 или M-Bus не чаще одного раза в месяц;
- время работы индикатора (при его наличии) не более 3 минут в сутки.

ВНИМАНИЕ! При температуре измеряемой жидкости от 90 °C до 130 °C срок службы батареи **не менее 4-х лет**.

ВНИМАНИЕ! Расходомеры со степенью защиты IP67 имеют только одно исполнение:

- температура жидкости не более 130 °C;
- автономное питание;
- комплектация ВП с индикатором.

4. МОНТАЖ РАСХОДОМЕРА

4.1. Общие требования

- в месте установки первичного преобразователя (ПП) расходомера в трубопроводе не должен скапливаться воздух;

- внутренний объем ПП в процессе работы должен быть весь заполнен жидкостью;

- ПП не должен располагаться в самой высокой точке трубопровода; наиболее подходящее место для монтажа (при наличии) – нижний либо восходящий участок трубопровода (см. рис.2);

Рис.2. Рекомендуемые места установки ПП расходомера.

- давление воды в трубопроводе должно исключать газообразование;
- ПП лучше располагать в той части трубопровода, где пульсация и завихрения жидкости минимальные;

- до и после места установки электроакустических преобразователей (ПЭА) должны быть прямолинейные участки трубопровода с длиной в зависимости от типа местного гидравлического сопротивления.

- при установке ПП на трубопровод, рекомендуется располагать его таким образом, чтобы продольная плоскость ПЭА (плоскость, проходящая через пару ПЭА вдоль оси трубопровода) составляла с вертикалью угол β = 45°-90° (см. рис.3).

Рис.3. Рекомендуемое положение ПЭА на трубопроводе относительно вертикали.

4.2. Требования к длине прямолинейных участков

Для нормальной работы расходомера до первого и после последнего по потоку ПЭА должны быть прямолинейные участки трубопровода соответствующей длины с DN, равным DN ПП. Минимальные значения относительной длины прямолинейных участков для различных видов гидравлического сопротивления приведены в табл.1.

Вид местного гидравлического Относительная длина прямолинейного сопротивления участка, L, не менее 2 1 10.DN Ş 臣 3.DN 10.DN Ð 3.DN ζ 10.DN 6 3.DN L 10.DN 10.DN I. 30.DN L Регулирующая задвижка

Таблица 1.

Продолжение табл.1

 полностью открытый <u>полнопроходной</u> шаровой кран не является гидравлическим сопротивлением.

При наличии в трубопроводе нескольких гидравлических сопротивлений, длина прямолинейного участка трубопровода до ближайшего к ПЭА сопротивления должна быть не менее указанной в данной таблице, а расстояние от ПЭА до каждого из остальных гидравлических сопротивлений должно быть не менее значения, приведенного в таблице для гидравлического сопротивления данного вида.

Длина прямолинейного участка L (мм) определяется по формуле:

 $L = N \cdot DN$,

где N – относительная длина, выраженная количеством DN и указанная в табл.1;

DN – диаметр условного прохода ПП или трубопровода в месте установки ПЭА, мм.

ВНИМАНИЕ! При измерении расхода реверсивного потока все ПЭА являются первыми по потоку и длины прямолинейных участков должны определяться, исходя из этого положения.

<u>4.3. Монтаж на трубопровод</u>

4.3.1. Перед началом работ на трубопроводе в месте установки расходомера участки труб, которые могут отклониться от соосного положения после разрезания трубопровода, следует закрепить хомутами к неподвижным опорам.

ВНИМАНИЕ! Перед монтажом расходомера необходимо слить жидкость и перекрыть участок трубопровода, на котором будут проводиться монтажные работы.

4.3.2. В выбранном месте освобожденного от жидкости трубопровода вырезается участок необходимой длины, к концам труб привариваются ответные фланцы соответствующего диаметра. Сварка фланцев с трубопроводом должна осуществляться в соответствии с ГОСТ 16037 «Соединения сварные стальных трубопроводов». При этом должна обеспечиваться соосность и плоскопараллельность фланцев, между которыми устанавливается ПП расходомера.

ВНИМАНИЕ! КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ приваривать к трубопроводу расходомер в сборе с ответными фланцами. Это приведет к выходу из строя расходомера.

4.3.3. Расходомер устанавливается в трубопровод, при этом направление стрелки на ПП должно совпадать с направлением потока или прямым направлением для реверсивного потока.

Стыки между фланцами герметизируются с помощью прокладок из безасбестового паронита, фланцы стягиваются болтами.

ВНИМАНИЕ! При монтаже **КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ** бросать расходомер или наносить по нему удары. Это может привести к выходу из строя установленных в нем ПЭА или ВП. **ЗАПРЕЩАЕТСЯ** поднимать расходомер за корпус вторичного преобразователя или кабели связи с ПЭА.

При необходимости возможен разворот на 180° крышки вторичного преобразователя расходомера.

4.4. Электромонтаж расходомера

После установки расходомера в трубопровод произвести подключение к нему кабелей питания (при его наличии) и кабелей связи (см. рис.4 и рис.5). Кабели пропускаются через гермовводы вторичного преобразователя и подключаются к соответствующим разъемам.

Кабели связи и сетевой кабель по возможности крепятся к стене. Для защиты от механических повреждений рекомендуется кабели размещать в металлорукавах, металлических либо пластиковых трубах (в том числе, гофрированных), коробах, лотках или кабель-каналах. Допускается совместное размещение сигнального кабеля и кабеля питания.

НЕ ДОПУСКАЕТСЯ крепить кабели к трубопроводу с теплоносителем.

Рис.4. Вторичный преобразователь с открытой крышкой.

Коммутационные элементы модуля обработки:

- ХР3 разъем подключения шлейфа связи с модулем индикации;
- XP4 разъем подключения модуля интерфейса RS-485 или M-Bus;
- XP1 разъем подключения кабеля питания =24В;
- ХР2 разъем подключения встроенной батареи;
- XT3 контактная колодка универсального выхода;
- ХТ4 контактная колодка логического выхода;
- SK1 переключатель установки режима работы универсального выхода;
- SK2 переключатель установки режима работы логического выхода;
- J2 джампер перевода расходомера в режим СЕРВИС.
- Коммутационные элементы модуля интерфейса RS-485:
- XT1 разъем выхода интерфейса RS-485;
- SK1, SK2 переключатели установки сетевого адреса расходомера.

4.5. Варианты электромонтажа расходомера

Рис.5а. Только универсальный выход при внешнем питании.

Рис.5б. Универсальный выход и интерфейс RS-485 при внешнем питании.

Рис.5в. Универсальный выход и интерфейс M-Bus при автономном питании.

4.6. Обеспечение степени защиты

ВНИМАНИЕ! Для обеспечения заявленной степени защиты расходомера при проведении монтажных работ необходимо выполнение следующих требований:

- при монтаже расходомера в наклонный или вертикальный трубопровод устанавливать вторичный преобразователь гермовводами вниз (рис.2);
- уплотнитель на крышке корпуса ВП при установке крышки должен быть чистым и неповрежденным;
- перед установкой крышки на корпус ВП проверить, чтобы уплотнитель размещался в предназначенном для него кольцевом пазу равномерно без натяжений и выступов, а также не выпадал при переворачивании крышки. Допускается для фиксации уплотнителя использовать силиконовый герметик;
- крышка ВП после установки должна быть надежно затянута винтами;
- в качестве кабелей питания и связи необходимо использовать кабели круглого сечения типа МКВЭВ, КММ или КСПВГ с наружным диаметром

от 3,0 до 6,5 мм; в один кабельный ввод заводится только один кабель;

 уплотняющие гайки кабельных вводов должны быть надежно затянуты;

- если не используются кабель питания или интерфейса, в их кабельные вводы должна быть установлена заглушка;

- для исключения возможности попадания капающей воды или конденсата внутрь ВП через кабельные вводы необходимо подключить кабели с образованием ниспадающей U-образной петли в вертикальной плоскости (рис.6).

Рис.6. Подключение кабелей с образованием U-образной петли в вертикальной плоскости.

ВНИМАНИЕ! Изготовитель НЕ НЕСЕТ ГАРАНТИЙНЫХ ОБЯЗАТЕЛЬСТВ при невыполнении требований по обеспечению заявленной степени защиты и при обнаружении протечек через кабельные вводы.

5. ИНТЕРФЕЙСЫ РАСХОДОМЕРА

5.1. Универсальный и логический выходы

Расходомер имеет универсальный и логический выходы (см. рис.7). Оба выхода не имеют гальванической развязки. Универсальный выход

может работать в частотном, импульсном и логическом режимах. Логический выход работает, соответственно, только в логическом режиме.

Назначения выходов, режимы работы, параметры выходных сигналов, а также отключение выходов задаются программными установками. При необходимости они могут быть изменены на объекте при вводе в эксплуатацию.

В частотном режиме работы универсального выхода на открытый выход выдается импульсная последовательность типа «меандр» со скважностью 2, частота следования которой пропорциональна текущему значению расхода.

Рис.7. Универсальный и логический выходы расходомера.

В импульсном режиме работы универсального выхода на открытый выход каждую секунду выдается пачка импульсов, количество соответствует значению объема, измеренному за предыдущую секунду.

В логическом режиме на выходе наличию события (или его определенному состоянию) соответствует один уровень электрического сигнала на выходе, а отсутствию события (или иному его состоянию) – другой уровень сигнала.

Для обеспечения сопряжения с различными типами приемников питание оконечного каскада выходов может осуществляться как от внутреннего источника питания – активный режим работы оконечного каскада, так и от внешнего источника – пассивный режим. По умолчанию оконечные каскады выходов работают в пассивном режиме. При необходимости использования выходов в активном режиме необходимо перевести переключатели SK1 и SK2 на модуле обработки в положение «ACTIVE».

При выпуске из производства устанавливаются типовые значения параметров работы универсального выхода: тип – импульсный, режим работы – пассивный, вес импульса – в зависимости от DN расходомера в соответствии с табл.2.

DN	Q _{min} , м ³ /ч	Q _{max} , м ³ /ч	Вес импульса, м ³ /имп
32	0,29	14,5	0,0010
40	0,45	22,6	0,0010
50	0,7	35,4	0,0025
65	1,2	60,0	0,0025
80	1,8	90,6	0,010
100	2,83	141,5	0,010
125	4,42	221,0	0,010
150	6,37	318,4	0,025

Таблица 2

5.2. Интерфейс RS-485

Последовательный интерфейс RS-485 позволяет вать измерительную, архивную, установочную и ческую информацию, модифицировать установочные параметры. Интерфейс RS-485 поддерживает протокол ModBus (RTU ModBus и ASCII ModBus), принятый в качестве стандартного в приборах фирмы «Взлет». Модуль интерфейса RS-485 (рис.8) устанавливается в модуль обработки по заказу.

Интерфейс RS-485 обеспечивает связь по кабелю в группе из нескольких абонентов, одним из которых может быть ПК, при длине линии связи до 1200 м.

При выпуске из производства в расходомер записывается сетевой адрес – 10. Используя переключатели SK1 и SK2 на модуле интерфейса (см. рис.8), можно изменить сетевой адрес прибора в соответствии с табл.3.

Рис.8. Модуль интерфейса RS-485.

Таблица 3

Положение	Соторой адроо	
SK1	SK2	Сетевой адрес
1	2	11
2	1	12
2	2	13

При установке обоих переключателей в положение 1 сетевой адрес прибора по интерфейсу можно установить любой (от 1 до 255).

Скорость обмена по интерфейсу RS-485 и прочие параметры связи устанавливаются программно.

5.3. Интерфейс M-Bus

Интерфейс M-Bus соответствует стандарту EH 60870-5. Интерфейс позволяет считывать измеренные и архивные данные. Модуль интерфейса M-Bus (рис.9) устанавливается в модуль обработки по заказу.

Подключение интерфейса производится по двум проводам, полярность подключения не важна. Скорость обмена по интерфейсу M-Bus устанавливается программно.

ВНИМАНИЕ! Недопустимо электропитание расходомера и M-Bus модема от одного источника питания.

Рис.9. Модуль интерфейса M-Bus.

5.4. Транспондер ближнего радиуса действия (RFID)

Расходомер оснащается RFID-меткой, устанавливаемой на модуле индикации, что позволяет производить считывание текущих измеренных значений расхода и настроечной информации, для чего необходим смартфон на базе Android, поддерживающий технологию коммуникации ближнего поля (NFC).

Программное обеспечение «Монитор УРСВ-311» для операционной системы Android доступно на сайте **www.vzljot.ru**. Подробное описание использования технологии NFC для связи с прибором приведено в разделе 6 настоящего руководства.

<u>5.5. Индикация параметров</u>

Вторичный преобразователь расходомера по заказу оснащается графическим жидкокристаллическим индикатором, имеющим встроенную подсветку при внешнем питании прибора. ЖКИ обеспечивает вывод двух строк алфавитно-цифровой информации при 16 символах в строке.

Перечень параметров, которые выводятся на индикатор расходомера, приведен в табл.4.

Таблица 4

		Ед. измерения	Кол-во знаков индикации		
Ооозначение	Паименование параметра	(формат)	целая часть	дробн. часть	
Время	Текущее время	= XX:XX			
Дата	Текущая дата	XX.XX.XX			
	Текущее значение	_			
Q	объемного расхода с учетом	м ³ /ч, л/мин	до 4	4	
	направления потока				
٧×	Объём прямого потока	м ³ п	ло 9	4	
• •	(нарастающим итогом)	141 , 51	доо	+	
V-	Объем обратного потока	м ³ п	ло 9	4	
	(нарастающим итогом)	141 , 51	доо		
ΣV	Суммарный объем	м ³ п	ло 9	4	
∠ •	(нарастающим итогом)	141 , J1	до з		
HC	Строка состояния				
Тр	Общее время наработки	XXX:XX ч:м	3	2	
Тб	Время безаварийной работы	XXX:XX ч:м	3	2	
K1		X.XXXXXX			
P1	Калибровочные	-X.XXXXXX	1	6	
К2	коэффициенты	X.XXXXXX	I	0	
P2		-X.XXXXXX			
ПО	Номер версии ПО	78.00.20.08			
CRC	Контрольная сумма ПО	0xA8D9			

ПРИМЕЧАНИЯ:

- 1. Значение расхода при обратном направлении потока, а также отрицательные значения суммарного объема и объема обратного потока индицируются со знаком минус.
- 2. Суммарный объем определяется как сумма объемов, накопленных при прямом (положительном) и обратном (отрицательном) направлениях потока, с учетом знака направления потока.

В режиме СЕРВИС индикатор включен постоянно. В режиме РАБОТА индикация включается по нажатию кнопки и выключается после последнего нажатия на нее через интервал, задаваемый в окне Время работы, с вкладки «Сервис» программы «Монитор УРСВ-311».

Переключение индикации параметров, приведенных в табл.4, производится по кольцу с помощью последовательных нажатий на кнопку, расположенную на лицевой панели прибора. В зависимости от степени защиты прибора кнопка может быть нажимная (для IP65) или оптическая (для ІР67).

6. ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ

Настройка расходомера на объекте производится при помощи программы «Монитор УРСВ-311» (рис.10) в режиме СЕРВИС – одевается перемычка на джампер J2 (см. рис.4). Перед началом работы с приром по интерфейсу соедините кабелем последовательный порт компьютера и RS-выход расходомера через адаптер сигналов RS-232/RS-485 или USB-порт компьютера через адаптер сигналов USB-RS-232/RS-485.

ма З Іманал сежан закрел	Команда выполнена успешно
Системные Сервис Настройка УЗО	С Измерения Состояние Архивы Параметры программы
Прочитать	
Режим присора: ГАООТА	
Серийный номер: 0	
Сетевые настройки прибор	а Текущее время и дата
Сетевые настройки прибор Сетевой адрес: 1	а Текущее время и дата Стерт [01/01/70 00:00:
Сетевые настройки прибор Сетевой адрес: 1	а Текущее время и дата Стерт 01/01/70 00:00: Стоп

Настройка СВЯЗИ по интерфейсу с расходомером производится в окне «Параметры программы» нажатием кнопки «Настройка coединения».

Рис.10. Основное окно программы «Монитор УРСВ-311».

Менеджер настроек	В появившимся ок- не «Менеджер
Выбор транспорта: RS485 ▼ Параметры транспорта СОМ-порт СОМ10 ▼ Ожидание ответа, мс 2000 Скорость обмена, бит/с 4800 ▼ Количество повторов 5 Байтовый таймаут, мс 20 Использовать DCOM Имя удаленного компьютера:	строек» (рис.11) установите: - выбор транспорта – RS-485; - СОМ-порт – тот, к ко- торому подключен адаптер сигналов; - скорость обмена, бит/с – 4800.
ОКПрименить	

Рис.11. Окно «Менеджер настроек» программы «Монитор УРСВ-311».

🔀 🤩 Канал связи открыт 78.00.20.08	Команда выполнена успешно
истемные Сервис Настройка УЗС Изме	рения Состояние Архивы Параметры программы
Прочитать	
Режим прибора: СЕРВИС	
Серийный номер: 1234567	
Сетевые настройки прибора	Текущее время и дата
Сетевой адрес: 1	
Скорость обмена: 4800 🔹 🔹	Записать системное время
-	Режим перевода 🛛 нет перевода 🔽 🛃 🚽
Обнулить архивы	
Обнулить объемы 🦾 💆	

Для установления связи с расходомером необходимо кликнуть мышкой на левую

ку в командной строке окна программы. Окно программы примет вид (рис.12).

Ha этой вкладке коррекция возможна приборного времени, настройка СВЯЗИ по терфейсу, обнуление архивов и объемов, а также установка режима перехода на «зимнее» / «летнее» время.

Рис.12. Основное окно программы «Монитор УРСВ-311» после установления связи с расходомером.

Кликните мышкой по вкладке «Сервис» и нажмите кнопки «Прочитать». Окно программы примет вид (рис.13):

В данном окне производится настройка обработки УЗС, установка значения контрастности и времени работы ЖКИ, выбор размерности измеряемого расхода. Для ввода параметров необходимо в соответствующем окне ввести числовое или символьное значение параметра и

Монитор УРСВ-311 верс	ия 3.1		1000	
🔉 🦂 Канал связи откр	ыт 78.00.20.08	Команда выполнена	зуспешно	
Системные Сервис Нас	тройка УЗС Измерения Сост	гояние Архивы Параг	метры программы	
Прочитать			<u>Параметры индика</u>	тора:
Мед. усреднение	7 🖌 Время инер	оции, с 10 🖌	Контрастность	28
Ариф. усреднение	25 🖌 Отсечка ну	ля, м3/ч 0,057 🛛 🗸	Период обновл., с	1 4
Быстрая установка	Вкл. 💌 🖊		Время работы, с	15 4
Отс. уст., %Qmax	5 له		Размерность	м3/час 🔻 🛃
Универсальный выход Прочитать С Отключен С Логический С Импульсный С Частотный Активный уровень С "Низкий" С "Высокий"	Логический выход Параметры Вес импульса, м3/имп (0,1 Период импульса, мс (10 Верхний порог Q, м3/ч (36 Расчет веса импульса (002500 el 10 el 1,000 el 1. v el	Объем Помодулю Прямой Обратный	

нажать соответствующую кнопку Для задания параметров работы универсального выхода необходимо в окне «Универсальный выход» задать тип выхода, после чего откроется окно с параметрами выхода в соответствующем режиме. Аналогично производится настройка логического выхода в окне «Логический выход».

Рис.13. Окно «Сервис» программы «Монитор УРСВ-311».

Кликните мышкой по вкладке «Измерения». Окно программы примет вид (рис.14). Нажав на кнопку «Старт», можно просмотреть измеряемые параметры.

• Монитор УРСВ-311 версия 3.1	
💥 🤸 Канал связи открыт 78.00.20.08	Команда выполнена успешно
Системные Сервис Настройка УЗС Измерения	Состояние Архивы Параметры программы
Старт Стоп	
Измеряемые значения	Накопленные значения
Расход	Суммарный объем
0.0000 мЗ/ч 0.000 л/мин	36,946 _{м3} 36945,72 _л
Скорость потока, м/с	Объем +
0.0000	36,966 м3 36965,93 л
Скорость УЗС, м/с	Объем-
0.0	0.020 м3 20.21 л
	Общее время наработки, ч:м:с
	872:36:1
	Время безаварийной работы, ч:м:с
	715:2:13

Рис.14. Окно «Измерения» программы «Монитор УРСВ-311».

Текущее состояние расходомера индицируется во вкладке «Состояние» при нажатии на кнопку «Старт» (рис.15).

Монитор УРСВ-311 версия 3.1
🔀 🤩 Канал связи открыт 🛛 78.00.20.08 Команда выполнена успешно
Системные Сервис Настройка УЗС Измерения Состояние Архивы Параметры программы
Старт Стоп
Инаратная неисправноств
О Текулини пасхол превышает максимальный
О Превышение верхнего порога по расхолу, лискретный выход 1
Принижение нижнего порога по расходу, дискретный выход 1

Рис.15. Окно «Состояние» программы «Монитор УРСВ-311».

Для считывания архивов необходимо перейти во вкладку «Архивы» (рис.16), выбрать вид архива (часовой, суточный или месячный), установить требуемый интервал в окнах «Дата» и «Время» (для часового архива) и нажать кнопку «Прочитать».

🖻 М	онито	ор УРСВ-311	версия 3.1			-	- 254		_ 0 <u>_ X</u>
×	4	Канал связи	открыт	78.00.20.08		Команда выполнена	успешно		
Сист	Системные Сервис Настройка УЗС Измерения Состояние Архивы Параметры программы								
Час	Часовой Суточный Месячный Журнал режимов								
1									I
Да	та	от: 16.06.2	2014 🕂 🛔	qo: 16.06.201	.4 <u>+</u> Пр	очитать Сохрани	ть архив		I
Вр	емя	от: 16:00:	00 ÷ /	qo: 18:00:00	÷ (Отмена			
A	охив г	, получен		,		———— і∨ Выводить	ь записи с с	шибками	
		1		hu	hu a	lue	la		
	запис	16/06/14 1	<u>я архива</u> 6:58:50	0.000000	0.000000	1HC 000000000000000000000000000000000000	0:0:30	<u>Время наработк</u> 0:0:30	
2		16/06/14 1	7:44:59	0,000000	0,000000	00000000000000000000000000000000000000	0:43:57	0:43:57	
_	_								

Рис.16. Окно «Архивы» программы «Монитор УРСВ-311».

В окне «Параметры программы» (рис.17) производится настройка программы для связи с расходомерами, объединенными в сеть по интерфейсу RS-485.

🔄 Монитор УРСВ-311 версия 3.1
🔀 🥠 Канал связи открыт 78.00.20.08 Команда выполнена успешно
Системные Сервис Настройка УЗС Измерения Состояние Архивы Параметры программы
Версия монитора: 1.0
Настройка соединения
Установить/разорвать соединение
Параметры программы
Адрес прибора 1
Ожидание ответа, мс 1000
Число попыток запроса 2

Рис.17. Окно «Параметры программы» программы «Монитор УРСВ-311».

7. ИНТЕРФЕЙС RFID

При использовании ПО «Монитор УРСВ-311» для операционной системы Android необходим смартфон на базе ОС Android версии 3.0 и выше с поддержкой NFC, например: Google Nexus S, Samsung Galaxy S3 и др.

7.1. Установка ПО «Монитор УРСВ-311»

Установка приложения «Монитор УРСВ-311» осуществляется путем скачивания инсталляционного apk. файла с сайта vzljot.ru. Для запуска

установки нечтобы димо, в стройках был активен на пункт меню стройки 1 пасность вестные (может КИ OTчаться В зависти ОТ модели смартфона) показанный на рис.18:

Рис.18. Вид меню Настройки/Безопасность/Неизвестные источники.

При помощи любого файлового браузера на смартфоне запускается файл. Далее скачанный тановите ПО, следуя подсказкам системы (рис.19).

На рабочем столе и/или меню приложений в вится устаиконка го ПО «Монитор УРСВ-311» (рис.20).

Рис.19. Окно установки

«Монитор УРСВ-311».

Рис.20.Иконка «Монитор УРСВ-311».

пункте меню (рис.21). приложения осуществляется на вующую иконку, либо при поднесении телефона к расходомеру.

R

Рис.21. Включение NFC

Во втором случае приложение либо запускается сразу, либо отображается в списке доступных приложений (рис.22). При успешном соединении индикатор в верхнем правом углу экрана загорится зеленым (рис.24). Если же соединение не будет корректно установлено, индикатор останется серого цвета.

Рис.22. Доступные приложения при автозапуске.

7.2. Чтение параметров

Рабочее окно прибора состоит из трех вкладок: «О приборе», «Текущие измерения» и «Архивы». Навигация между вкладками осуществляется при помощи горизонтального скроллинга пальцем. При запуске чтения параметров путем нажатия на кнопки «Прочитать», в верхней части экрана отобразится прогресс бар в виде 💋 Монитор УРСВ-311 вращающегося круга (рис.23):

Рис.23. Индикация обмена данными.

Если при получении данных возникает ошибка, на месте значения соответствующего параметра отображается сообщение «ошибка».

7.3. Вкладка «О приборе»

Внешний вид вкладки «О приборе» показан на рис.24.

На вкладке «О приборе» отображаются следующие параметры:

- версия ПО расходомера;
- контрольная сумма (КС) программного обеспечения;
- серийный номер расходомера;
- диаметр условного прохода (DN);
- режим работы;
- калибровочные коэффициенты;

- информация об использовании универсального и логического выходов, КР1 (если универсальный выход работает в частотном или импульсном режиме).

Рис.24. Окно вкладки «О приборе».

7.4. Вкладка «Текущие измерения»

🕳 😲 😥 త	🖋 🔟 🖬 11:35
💋 Монитор	урсв-311
О ПРИБОРЕ ТЕН ИЗ	УЩИЕ АРХИВЫ МЕРЕНИЯ
Текущее время	15:31:08 06.06.14
Q, м3/ч	0,012
Q, л/мин	0,202
V, мЗ	36,946
V+, мЗ	36,966
V-, мЗ	-0,020
Общее время наработки, ч 861:22	
Время безаварийной работы, ч 715:0	
Ошибок нет	
_	
	оочитать

Чтение текущих значений осуществляется нажатием на кнопку «Прочитать».

На вкладке отображаются:

- текущие дата и время;
- текущее значение расхода (в м³/ч и л/мин);
- накопленные объемы (прямой, обратный и суммарный);
- общее время наработки и время безаварийной работы;
- нештатные ситуации.

Суммарный объем рассчитывается на основании полученных данных о V+ и V-.

Рис.25. Вкладка «Текущие измерения».

При отсутствии НС отображается сообщение «Ошибок нет», в противном случае отображается соответствующая нештатная ситуация (рис.26).

Рис.26. Отображение текущей НС.

7.5. Вкладка «Архивы»

Внешний вид вкладки «**Архивы**» показан на рис.27. Во вкладке производится выбор часового, суточного или месячного архива. После выбора типа архива раскрывается окно с записями выбранного архива (рис.28):

Рис.27. Вкладка «Архивы».

Рис.28. Вкладка с записями выбранного архива.

Для сохранения всех записей в файл нажмите кнопку «Сохранить».

Для просмотра выбранной записи выделите ее и нажмите кнопку «**Прочитать**», после чего откроется окно с выбранной архивной записью (рис.29).

На устройстве полученные фалы хранятся по следующему адресу:

sdcard\Android\data\com.vzljot.monitorvzljotmr\ex port\

В зависимости от устройства путь к сохраненным файлам архивов может отличаться.

Примечание. Имя файла формируется с указанием типа архива и времени считывания записи из прибора.

Рис.29. Вкладка выбранного архива.

8. ПЛОМБИРОВАНИЕ

По завершению пуско-наладочных работ снять перемычку с джампера J2 (см. рис.30), закрыть его пломбировочной чашкой, закрепить винтом и опломбировать эксплуатационной пломбой.

Пропустить проволоку сквозь отверстия в крышке и корпусе вторичного преобразователя, скрутить ее и опломбировать навесными пломбами (см. рис.31).

Крепежный винт

Рис.30. Пломбировка джампера СЕРВИС.

Рис.31. Внешние пломбы.

9. САМОДИАГНОСТИКА

Перечень неисправностей и нештатных ситуаций, диагностируемых прибором и индицируемых на дисплее (при его наличии) в виде символа «**X**» в строке «**HC** = – – – – – » приведен в табл.5. Отсчет порядкового номера знакоместа производится *справа налево*.

Таблица 5

Порядковый номер знакоместа	Содержание неисправности, нештатной ситуации
1	Аппаратная неисправность
2	Низкое напряжение батареи
3	Нет УЗС
4	Текущий расход больше максимального
5	Текущий расход выше установленного верхнего порога
6	Текущий расход ниже установленного нижнего порога

Аналогичную информацию можно считать по интерфейсу во вкладке «**Состояние**» программы «Монитор УРСВ-311» (см. рис.15), при наличии НС или неисправности светодиод в соответствующей строке светится красным цветом.

Нештатные ситуации за прошедшее время фиксируются в архиве прибора и их можно просматривать по последовательному интерфейсу во вкладке «**Архивы**», выбрав вид архива и временной интервал. Назначение с 1-ой по 6-ую позиций (справа налево) 16-позиционного кода в столбце НС архива соответствует указанному в табл.5. Наличие неисправности указывается цифрой «1», отсутствие – цифрой «0».

10. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 10.1. Введенный в эксплуатацию расходомер рекомендуется подвергать периодическому осмотру с целью контроля:
 - работоспособности расходомера;
 - соблюдения условий эксплуатации;
 - наличия напряжения питания в заданных пределах;
 - отсутствия внешних повреждений составных частей расходомера;
 - надежности электрических и механических соединений.

Периодичность осмотра зависит от условий эксплуатации, но не должна быть реже одного раза в один месяц.

Не реже одного раза в год необходимо проводить профилактический осмотр внутреннего канала ПП на наличие загрязнений и/или отложений. Допускается наличие легкого рыжеватого налета, который при проведении профилактики должен сниматься с помощью чистой мягкой ветоши, смоченной в воде.

При наличии загрязнений и отложений другого вида или их существенной толщины необходимо произвести очистку внутренней поверхности ПП с помощью воды, чистой ветоши и неабразивных моющих средств сразу же после извлечения расходомера из трубопровода.

Наличие существенных загрязнений на поверхности ПП, контактирующей с жидкостью, свидетельствует о неудовлетворительном состоянии трубопровода.

- 10.2. При выявлении повреждений изделия, кабелей питания, связи необходимо обратиться в сервисный центр или региональное представительство для определения возможности его дальнейшей эксплуатации.
- 10.3. Работоспособность прибора определяется по наличию и содержанию индикации на дисплее расходомера или на мониторе ПК.
- 10.4. Расходомер по виду исполнения и с учетом условий эксплуатации относится к изделиям, ремонт которых производится на специальных предприятиях либо на предприятии-изготовителе.
- 10.5. Отправка расходомера для проведения поверки, либо ремонта должна производиться с паспортом прибора. В сопроводительных документах необходимо указывать почтовые реквизиты, телефон и факс отправителя, а также способ и адрес обратной доставки.

При отправке прибора в поверку или в ремонт необходимо после демонтажа очистить внутренний канал ПП от отложений, осадков, накипи, а также от остатков рабочей жидкости.

Система менеджмента качества ЗАО «Взлет» сертифицирована на соответствие ГОСТ ISO 9001-2011 (ISO 9001:2008)

* * *

ЗАО «Взлет»

ул. Трефолева, 2 БМ, г. Санкт-Петербург, РОССИЯ, 198097

E-mail: mail@vzljot.ru

www.vzljot.ru

Call-центр 🕿 8 - 8 0 0 - 3 3 3 - 8 8 8 - 7

бесплатный звонок оператору

для соединения со специалистом по интересующему вопросу

© ЗАО «Взлет»

krp_ursv-311_doc1.4